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Motivation Related work

e Most theories of behavior posit that agents tend to maximize some form of extrinsic reward or utility:. e In entropy-regularized reinforcement learning (RL), extrinsic rewards are their ultimate driver of

goal-directed behavior [1,2].
e However, very often animals move with curiosity and seem to be motivated in a reward-free manner.
e Surprise or prediction error minimization [3,4] and novelty seeking [5] are intrinsic motivations that

e We propose the Maximum Occupancy Principle (MOP), a reward-free objective: Maximizing occu- change as a state of learning. MOP always pushes agents to occupy path space.

pancy of future paths of actions and states.
e Other entropic reward-free approaches focus on the coverage problem [6,7], maximizing the steady-

e Rewards are the means to occupy path space, not the goal per se: goal-directedness simply emerges state state entropy.

as a rational way of searching for resources so that movement, understood amply, never ends.
e Empowerment maximizes mutual information between states and actions [8] and does not push

Main idea agents to actually fulfill a diverse and predictable set of states.
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m‘ is the probability of transition to state s’. The intrinsic return from following an action-state path

T = (80, a0, S1, ---, At, St 1, ---) comes from four desiderata for path occupancy, and turns out to be
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MOP agents maximize path occupancy. (a) A MOP agent has the choice between going left or right. When the
number of actions (black arrows) in each room are the same, the agent prefers going to the room with more state transitions. Stochastic dance in a CartpOle

(b) When the states transitions are the same in the rooms, the MOP agent prefers the room with more available actions.
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(¢) The MOP agent avoids absorbing states, even when there are many immediate actions. (d) Even if there are action and
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state-transition incentives (in the left room), a MOP agent might prefer a region of state space where it can reliably get food

(right room), ensuring occupancy of future action-state paths.
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d e ﬁ i e The MOP agent occupies a wide variety of pole angles. The e-greedy survival maximizer (R agent)
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e The MOP agent enters the four rooms in the long term by storing energy w in its reservoir (b). 0 = F 0101 ’
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e The MOP agent is also capable of deterministic behavior (¢, only one action considered at corners). o
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Diverse behavioral repertmres in a predator—prey scenario o I
o e MOP can be applied to control a high-dimensional quadruped. The MOP agent avoids falling (top
MOP n R agent X X ) ) i i
e : Visits row) and starving (bottom), while generating vigorous, variable behavior.
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e We have proposed that a major feature of behavior is to occupy path space, captured by future
100
action-state path entropy:.
0
¢ Viiop (2,4, Vo, Wy, uu = 6) Viop (@1, Vo, ¥y, u = 12) e We have shown that MOP, along with the agent’s constraints and dynamics, leads to complex,
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- _% ¢ %y A A 2 40
= 207 V' o« x g T/\J kv o oy e Several steps remain to fully characterize MOP agents, which includes the effect of online learning
é é W'\\ g X 30 and partially observable environments.
§ 0.5F A
14 16 18 20 c -+
Food gain el 20 References

Todorov, E. PNAS, 2009

Ziebart, B., 2010

Friston, K. et al. PLOS ONE, 2009
Pathak, D. et al. ICML, 2017

Bellemare, M. et al. NeurIPS, 2016
Hazan, E. et al. ICML, 2019

Amin, S. et al. Methods in RL, 2021
Klyubin, A. et al. PLOS ONE, 2008

e A MOP prey trades off escaping from a predator and getting food, can be deterministic, and it
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displays more diverse escaping strategies than an e-greedy survival maximizer (R agent).



