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Motivation
• Navigating an environment in a goal-directed behaviour involves tracking 

critical variables, e.g. location and heading direction for spatial 
navigation.


• Visual motion processing circuits of the brain analyse global patterns of 
retinal image motion (optic flow) generated by movement of the observer, 
signals that help with navigation.


• Whereas human behavioral studies have extensively examined how optic 
flow contributes to goal-directed navigation, not much is known about 
the neural processing of optic flow that guides navigation, especially for 
closed-loop tasks.

Task

• We designed a simple fixed-duration navigation task in which a monkey 
needs to steer a joystick to align themselves to a cued target (like driving 
a car), which is not visible during steering.


• The virtual environment only provides noisy optic flow feedback in the 
form of a random dot motion, that reacts coherently with the monkey's 
steering, and whose coherence can be experimentally modulated (like 
driving a car in a snow storm).


• In addition, we introduce external perturbations to the angular velocity, 
which decouple the joystick signal from the optic flow (like there is an 
unpredictable wind pushing the car), making it necessary to observe the 
dot motion.

Experimental results

System dynamics

Mean trajectories

Model
• We develop a minimal and interpretable stochastic optimal control model 

that captures important features in the data such as multiplicative noise in 
the control and reactive, closed-loop control in the presence of external 
perturbations.
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Fitting model to data

Future work: estimating internal states

We fit 7 global parameters  plus the coherence 
, by performing a grid search over parameters and minimising 

distance between the mean experimental and the mean modelled 
angular velocity exerted by the joystick.

(r, q, τ1, τ2, σu, σp, τp)
σo

̂x(t + Δt) = A ̂x(t) + Bu(t) + K(t)(o(t) − H ̂x(t))

Optimal control u(t) = − L(t) ̂x(t)

Conclusions
• Current model can capture behaviour by modelling cost and internal 

dynamics such as integration of control over time. By modelling 
partial observability, we can manipulate relevance of experimental 
observations and thus probe the integration of control and 
observations.


• By estimating internal variables, it will be possible to correlate certain 
signals such as control, optic flow and heading to neural activity from 
relevant brain areas.
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