> Universitat
ﬁ% R J upf Pompeu Fabra

Barcelona

AN Generalitat
Y de Catalunya

o A Seeking entropy: Complex behavior
WA | FSE inverteix en el teu futur

from intrinsic motivation to occupy
action-state path space

Jorge Ramirez-Ruiz', Dmytro Grytskyy' and Rubén Moreno-Bote'

'Center for Brain and Cognition, and Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
“Serra Hunter Fellow Programme, Universitat Pompeu Fabra, Barcelona, Spain

Motivation Four-room grid world
a b

Most theories of behavior posit that agents tend to maximize some form of reward or utility. However, very often animals H agent R agent € = 0.45 Random walker Probability
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move with curiosity and seem to be motivated in a reward-free manner. We propose the Maximum Path Occupancy HEN l ]
(MPO) principle, a reward-free objective: Maximizing occupancy of future paths of actions and states. According to this 0.010
view, rewards are the means to occupy path space, not the goal per se; goal-directedness simply emerges as a rational 1
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way of searching for resources so that movement, understood amply, never ends. A - 0.005
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Our framework builds over an extensive literature on entropy-regularized reinforcement learning (RL), where, however, 9 0.757 / % o) U0
rewards serve still as the major drive of behavior. In intrinsic motivation approaches, exploration is promoted through 2 0.50 0.03 2 0x0
explicit information-seeking objectives in a learning setting, such as surprise minimization and novelty seeking. Our MPO 2 0.95 g agent %
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principle differs from these approaches in that agents will still move and occupy path space even if there is nothing to £ 000 ke 0.01 c
learn. Other entropic reward-free approaches focus instead on the coverage problem, maximizing the steady-state state e 0 £ 0.00¢: - - -
’ Fm o 10 0.0 0.1 0.2 0.3

entropy, and they do so typically to generate better policies in the exploitation phase when a well-defined task is to ood gain o room 3
be solved. Finally, there is a class of reward-free objectives known as empowerment that focus instead on generating Figure 2: Maximizing future path occupancy leads to high occupancy of physical space. (a) Grid-world arena. The agents have nine available
pOhCleS that maXImlze the agen‘tﬂs predlctlve power’ and therefore generate qualltatlvely dlﬁerent behaVIOI'S ln Stochastlc actions (arfOWS, and Staying Stlll) when alive (internal energy larger than ZGI'O) and away from walls. There are four rooms, each with a small

, , o food source in a corner (green diamonds). (b) Probability of visited spatial states for an entropy-seeking (H) agent, an e-greedy reward (R) agent
environments than our maximum path occupancy principle. that survives as long as the H agent, and a random walker. Food gain = 10 units, maximum reservoir energy = 100, episodes of 5 x 10* time
steps, and (a, 8) = (1,0) for the H agent. All agents are initialized in the middle of the lower left room. (c) Fraction of locations of the arena
visited at least once per episode as a function of food gain. Error bars correspond to s.e.m over 50 episodes. (d) Noisy room problem. The bottom
right room of the arena was noisy, such that agents in this room jump randomly to neighboring locations regardless of their actions. Food gain
equals maximum reservoir energy = 100. Histogram of visited locations for an episode as long as in (b) for a H agent with g = 0.3 (left) and
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Maln ldea time fraction spent in the noisy room (right) show that H agents with 5 > 0 can either be attracted to the room or repelled depending on +.
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Figure 3: Complex hide-and-seek and escaping strategies in a prey-predator example. (a) Grid-world arena. The agent has nine available actions
V*(s) = Zsf,a, 7 (als)p(s']s. a) [ —In <7T “*(al )pﬁ (s'] ,a)) + YV*(s') } when alive and far from walls. There is a small food source in a corner (green diamond). A predator (red, down triangle) is attracted to the
agent (gray, up triangle), such that when they are at the same location, the agent dies. The predator cannot enter the locations surrounded by
the purple border. Arrows show a clockwise trajectory. (b) Histogram of visited spatial states across episodes for the H and R agents. The vector
‘ food field at each location indicates probability of transition at each location. Green arrows on R agent show major motion directions associated with
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A MPO agent (= H agent) — available actions in room J_ absorbing state the its dominant clockwise rotation. (c¢) Fraction of clockwise rotations (as in panel (a)) to total rotations as a function of food gain, averaged

over epochs of 500 timesteps. Error bars are s.e.m.

Figure 1: Entropy-secking agents (H agents) achieve maximum path occupancy (MPO). (a) An H agent (grey triangle) in the middle of two
rooms has the choice between going left or right. When the number of actions (black arrows) in each room are the same, the agent prefers going
to the room with more state transitions (blue arrows indicate random transitions after choosing moving right or moving left actions, and pink
arrow width indicates the probabilities of those actions). (b) When the states transitions are the same in the rooms, the H agent prefers the Cartpole
room with more available actions. (c) If there are many absorbing states in the room where many actions are available, the H agent avoids it. (d)
Even if there are action and state-transition incentives (in the left room), an H agent might prefer a region of state space where it can reliably

get food (right room), ensuring occupancy of future action-state paths. a C R agent
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Focusing on finite state-action Markov Decision Processes (MDP), Actions = {e—, « , @ ,> —} > e T o 1 2 e 101 2
1) We find that action-state path entropy is the only measure consistent with additivity and other intuitive properties of o Position x Position z
expected future action-state path occupancy. d Intended action: (—) e f
2) We provide analytical expressions that relate the optimal policy and state-value function, and prove convergence of ( )‘/(\‘ ) 1.007 1.007
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3) Using discrete and continuous state tasks, we show that complex behaviors such as ‘dancing’, hide-and-seek and a § 0.50
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basic form of altruistic behavior naturally result from the intrinsic motivation to occupy path space. [ £
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We study finite state and action MDPs. A policy 7(+|s) defines a probability for each action at every state s in the MDP. Figure 4: Dancing of an entropy-seeking cartpole. (a) The cart (brown rectangle) has a pole attached. The cartpole reaches an absorbing state

if the magnitude of the angle 6 exceeds 36 deg or its position reaches the borders. There are 5 available actions when alive: a big and a small
force to either side (arrows on cartpole), and doing nothing (full circle). (b) Time-shifted snapshots of the pole in the reference frame of the cart
as a function of time for the H (top) and R (bottom) agents. (c) Position and angle occupation for a 2 x 10° time step episode. (d) Here, the
( S0, 05 S1y -y Oty Si41, ) right half of the arena is stochastic, while the left remains deterministic. In the stochastic half, the intended state transition due to an applied
action (force) succeeds with probability 1 — n (and thus zero force is applied with probability 1). (e) Fraction of time spent on the right half of
the arena increases as a function of 3, regardless of the failure probability n. (f) The fraction has a non-monotonic behavior as a function of 7
50 when state entropy is important for the agent (8 = 1), highlighting a stochastic resonance behavior. When the agents do not seek state entropy
R( 7_) _ Z ’Yt In ( Wa( CLt| 3t> pﬁ( 3t+1‘ s, at)) . ;B_:OOggt?Erf;zi;;(l)sn(szsime spent by the agent on the right decreases with the failure probability, and thus they avoid the stochastic right side.
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At every state s, and given action a, the environment produces a distribution over successor states s” acording to p(s’|s, a).

Starting at ¢ = 0 in state sy and following policy m, an agent experiences a path in action-state space 7 =

Then, we find the intrinsic return from four properties of path occupancy, and find it to be

The value function of a given policy at a given state V(s) is defined as the expected return when following the policy .

Conclusions

The optimal value function V*(s) follows the optimal Bellman equation, whose solution we find to be

e Often, the success of agents in nature is not measured by the amount of reward obtained, but by their ability to
* —1 / —1 / x( !
Vi(s)=alnZ(s)=aln Z exp | a SH(S|s,a) +a”y ZP<3 s, a)VE(s) || - expand in state space and perform complex behaviors. Here we have proposed that a major goal of intelligence is
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to ‘occupy path space’.
And the optimal policy uses this optimal value,

e We show that the intuitive notion of path occupancy is captured by future action-state path entropy, and we have

7 (als) = 1 exp | a 1M (S'|s,a) + oy Z p(s|s, a)V*(s') | . proposed that behavior is driven by the maximization of this sole intrinsic goal —the MPO principle.

Z(s)
’ e In four examples we have shown that the MPO principle, along with the agent’s constraints and dynamics, leads

to complex behaviors that are not observed in other simple reward maximizing agents.

e Several steps remain to fully characterize MPO agents, which includes learning and partially observable environ-

ments.




